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Abstract
We consider a variational method for deriving relativistic two- (and many-) body
wave equations for interacting matter fields from partially reduced quantum
field theory. The classical Lagrangian of the theory is reformulated by partially
eliminating the mediating field by means of the covariant Green function. The
reformulated Lagrangian contains time-nonlocal interaction terms in which
the mediating-field Green function appears directly, sandwiched between the
particle currents. The transition to the Hamiltonian formalism is implemented
within an approximation scheme, on account of the time nonlocality.
We consider an approximation, which is first order in the coupling constant.
The system is quantized canonically. The variational principle is used to derive
relativistic two-particle integral wave equations with a kernel, which include the
4D Fourier transform of the covariant Green function. We apply this approach
to the Yukawa model and consider generalizations based on nonstandard field-
theoretical models.

PACS numbers: 12.20.Ds, 03.65.Pm, 36.10.Dr, 11.10.St

1. Introduction

The use of the variational method in quantum field theory (QFT) is a promising approach
to the relativistic bound state problem. The input in this method is a Hamiltonian for the
system and a trial state which should be chosen appropriately for the problem considered. The
choice of trial state in the variational method is more like guess work than a formal procedure,
especially in QFT, where channel wavefunctions stand for variational parameters [1, 2]. In
principle, the more channels are included in the trial state, the better the approximation, but
the more complicated the set of coupled wave equations that is obtained as a result.

0305-4470/04/348365+17$30.00 © 2004 IOP Publishing Ltd Printed in the UK 8365

http://stacks.iop.org/ja/37/8365


8366 A Duviryak and J W Darewych

For processes in which there are no physical bosons of the field mediating the interaction
(or where their interaction with the system is negligible), the treatment of the system can be
simplified considerably. The idea lies in the elimination of the mediating field at the classical
level by means of covariant Green functions [3–6]. The reformulated theory includes only
the field variables of the matter fields but not those of the mediating field. Consequently, the
set of trial states at the quantum level, needed to describe the system, can be smaller compared
with the original (non-reformulated) theory. Thus the combination of the variational method
with the partial reduction of the QFT becomes an effective tool for describing bound and
quasi-bound states [3, 5, 6].

However, the reformulation leads to another problem. The reformulated Lagrangian
contains nonlocal interaction terms in which the mediating-field Green functions appear
directly, sandwiched between the particle currents. The Hamiltonization of such Lagrangians
is not a straightforward procedure. In the papers cited above the Hamiltonization procedure
was performed by means of prescriptions, which are not rigorously substantiated, or have
restricted application.

In the present paper we consider the problem of consistent Hamiltonization of nonlocal
partially reduced Lagrangians. The approach is based on the general procedure of
Hamiltonization developed in the literature for nonlocal Lagrangian mechanics [7, 8].
Specifically the procedure is based on expansions in the coupling constant. Special attention
is paid to the Noether conserved quantities which correspond to the Poincaré invariance of the
nonlocal Lagrangian.

In the present paper we first illustrate this procedure on the partially reduced scalar
Yukawa model, for which we obtain a variational wave equation for two-particle states in
first-order approximation. Thereafter we consider a generalization of the Yukawa model, in
which the Green function of the Klein–Gordon equation (for the mediating field) is replaced by
any symmetric Poincaré-invariant kernel appropriate for different types of interactions. The
interaction kernel may be chosen phenomenologically, or derived from some effective QFT. It
may arise, also, from nonstandard classical field theories, the quantization of which is difficult
or inconsistent. We shall consider a few such examples in this paper. Two of them are based
on higher derivative field theories that lead to confining interactions. Others originate from
nonlocal field theory.

2. Yukawa model in standard and partially reduced formulations

We proceed from the classical action integral I = ∫
d4xL(x), where the Lagrangian density

L = ∑2
a=1 La + Lχ + LY consists of the following terms: La are standard free-field terms

corresponding to complex scalar ‘matter’ fields φa(x) (a = 1, 2) with rest masses ma,Lχ is
the free-field term of a real scalar mediating field χ(x) and LY = ρχ is the Yukawa interaction
term, where

ρ = −
2∑

a=1

gaφ
∗
aφa. (2.1)

For the standard Yukawa model Lχ = 1
2 {(∂µχ)(∂µχ) − µ2χ2}, where µ is the rest mass of

the quanta of χ .
The variation of the action I leads to the coupled set of the Euler–Lagrange equations,(

� + m2
a

)
φa = −gaφaχ,

(
� + m2

a

)
φ∗

a = −gaφ
∗
aχ, (2.2)

(� + µ2)χ = ρ. (2.3)
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Equation (2.3) can be solved exactly [4, 5]: χ(x) = χ0(x) +
∫

d4x ′G(x, x ′;µ)ρ(x ′),
where χ0(x) is the solution of the homogeneous Klein–Gordon equation for the χ field, and
G(x, x ′, µ) is the Green function of the Klein–Gordon equation. Using this solution in the
equations (2.2) one obtains a coupled set of integro-differential equations for the fields φa(x)

and φ∗
a (x), which we shall refer to as partially-reduced field equations.

Henceforth we shall put χ0(x) = 0, that is, we shall not consider processes involving
physical ‘chions’ (quanta of the mediating field). In addition, we choose the Green function
to be symmetric: G(x, x ′;µ) = D0(x − x ′;µ) = D0(x

′ − x;µ). This choice guarantees the
existence of a variational principle for the partially-reduced field equations [9], which is very
important for the quantization of the model. Therefore, the solution for χ(x) reads

χ(x) = [D0 ∗ ρ](x) ≡
∫

d4x ′D0(x − x ′;µ)ρ(x ′). (2.4)

Using this solution in the original action integral, we obtain (modulo surface terms) a modified
action which leads to the partially-reduced field equations.

At this point we generalize the original Yukawa model and replace the Green function
D0(x − x ′;µ) by an arbitrary symmetric Poincaré-invariant kernel K(x − x ′) = K(x ′ − x).
The modified Lagrangian density,

L =
2∑

a=1

La + Lint

=
2∑

a=1

{
(∂µφ∗

a )(∂
µφa) − m2

aφ
∗
aφa

}
+

1

2

∫
d4x ′ρ(x)K(x − x ′)ρ(x ′), (2.5)

can be useful for the description of effective interactions of quarks and hadrons. For
example, if K(x − x ′) is the solution of the equations �2K(x − x ′) = δ(x − x ′), the model
leads to a confining interaction (see section 9).

3. Conserved quantities

The Poincaré-invariance of the Yukawa model leads to the existence of conserved energy–
momentum tensor T µν and angular-momentum tensor Mµλσ = T µλxσ − T µσxλ. They
generate corresponding conserved quantities: the 4-momentum P µ = ∫

d3x T 0µ and the
angular momentum Mλσ = ∫

d3x M0λσ (here µ, ν, λ, σ = 0, . . . , 3). The energy–momentum
tensor can be written in the form

T µν =
2∑

a=1

T µν
a + T µν

χ + T
µν

Y , (3.1)

where

T µν
a = {(∂µφ∗

a )(∂
νφa) + (∂νφ∗

a )(∂
µφa)} − ηµνLa, (3.2)

T µν
χ = (∂µχ)(∂νχ) − ηµνLχ , (3.3)

T
µν

Y = −ηµνρχ, (3.4)

and ‖ηµν‖ = diag(+,−,−,−) is the Minkowski metric.
Substitution of the solution (2.4) into equations (3.1)–(3.4) yields the conserved

quantities for the partially reduced model. These expressions are not satisfactory for a number
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of reasons. First, the energy–momentum tensor (3.1) includes terms which are quadratic in
χ . These terms are rather cumbersome, and it is not evident that products of distributions
D0(x − x ′) in these terms are well defined. Second, expressions (3.1)–(3.4) are not valid
for the generalized model (2.5). Therefore, we discuss next the procedure for obtaining the
appropriate expressions for conserved quantities.

By making use of the field equation (2.3) we obtain the equality ∂µT µν
χ = ρ∂νχ , which,

upon integration over all 3-space, yields,∫
d3x ∂µT µν

χ = d

dt

∫
d3x T 0ν

χ =
∫

d3x ρ∂νχ. (3.5)

Integrating further over time and using equation (2.4) leads to the result

∫
d3x T 0ν

χ =
∫ t

−∞
dx0

∫
d3x ρ∂νχ

= 1

2

[∫ t

−∞

∫ ∞

t

−
∫ ∞

t

∫ t

−∞

]
dx0 dx ′0

∫
d3x

∫
d3x ′ρ(x){∂νD0(x − x ′)}ρ(x ′).

(3.6)

The last equality holds by virtue of the skew-symmetry of the kernel: ∂νD0(x − x ′) =
−∂ ′νD0(x

′ − x) which, in turn, is a consequence of the symmetry of D0(x − x ′).
The calculation of other contributions to the 4-momentum is straightforward and, in

particular, ∫
d3x T

0µ

Y = −η0µ

∫
d3x

∫
d4x ′ρ(x)D0(x − x ′)ρ(x ′). (3.7)

The 4-momentum is now linear in the chion propagator. Moreover, by replacing D0(x − x ′)
with K(x − x ′) in equations (3.6) and (3.7) we obtain the conserved 4-momentum for the
generalized model defined by the Lagrangian density (2.5).

The treatment of the angular momentum is quite similar but more cumbersome. We omit
the details and write down the final expressions for 4-momentum and angular momentum of
the generalized model:

P µ(t) =
2∑

a=1

∫
d3x T 0µ

a (x)|x0=t − η0µ

∫
d3x

∫
d4x ′ρ(x)K(x − x ′)ρ(x ′)|x0=t

−
∫

d4x

∫
d4x ′
(x0 − t, x ′0 − t)ρ(x){∂νK(x − x ′)}ρ(x ′), (3.8)

Mλσ (t) =
2∑

a=1

∫
d3x T 0[λ

a (x)xσ ]|x0=t −
∫

d3x

∫
d4x ′ρ(x)η0[λxσ ]K(x − x ′)ρ(x ′)|x0=t

−
∫

d4x

∫
d4x ′
(x0 − t, x ′0 − t)ρ(x){∂ [λK(x − x ′)xσ ]}ρ(x ′). (3.9)

We have used the notation a[µbν] ≡ aµbν − aνbµ, and


(t, s) ≡ θ(t)θ(−s) − θ(−t)θ(s) = 1
2 (sign t − sign s), (3.10)
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in equations (3.9) and (3.10), where θ(t) is the Heaviside step function. We note that, in
deriving equation (3.9), we exploited the skew-symmetry of the kernel ∂ [λK(x − x ′)xσ ] =
−∂ ′[λK(x ′ − x)x ′σ ], which follows from the symmetry and the Poincaré-invariance of
K(x − x ′).

4. Hamiltonian structure of the nonlocal Lagrangian

The interaction term Lint in the Lagrangian density (2.5) is not a function but a functional of
field variables. Thus it represents a nonlocal field-theoretical model.

Nonlocal field theories arose in attempts to remove ultraviolet divergences [10, 11] and
their study has developed into an established branch of theoretical physics [12]. At present
it encompasses a variety of models describing mostly the strong interaction of particles
[13, 14], renormalization methods [15, 16], etc. Results are formulated mostly in the functional
integration language and the treatment is rather complicated.

In this paper we use a treatment which is maximally close to the canonical quantization,
i.e., we put the model into Hamiltonian form at the classical level and then perform a
quantization. This permits us to separate peculiarities and some difficulties of the model
due to its nonlocal nature from other general quantum features.

Because of the nonlocality, the transition to the Hamiltonian formalism cannot be
performed in the standard way. Thus we will use the procedure which was developed for
Hamiltonization in the formalism of Fokker action integrals [7] and then generalized to the
case of arbitrary nonlocal Lagrangians [8].

The idea of Hamiltonization of nonlocal Lagrangians is the following. Suppose the
Lagrangian L(t, [q]) is a functional of the dynamical variable q(t). One replaces this variable
by a ‘field’ variable Q(t, λ) defined on the two-dimensional (time) × (‘position’) space,
while the new Lagrangian L(t,Q) is considered to be local in the time variable t and nonlocal
in the ‘position’ variable λ. Simultaneously, the constraint (∂t − ∂λ)Q(t, λ) = 0 is imposed.
The transition to the Hamiltonian description of this new system is performed according to
Dirac’s constraint theory [17]. From the constraint we have Q(t, λ) = q(t +λ). Moreover, the
Hamiltonian flow is tangential to the submanifold of the phase space defined by the original
Euler–Lagrange equation δ

{ ∫
dt ′L(t ′, [q])

}/
δq(t) = 0. Thus the symplectic structure and

the Hamiltonian can be pulled back to this submanifold.
In the case of field theory, the original fields φ(x) = φ(x0,x) on the Minkowski

(1+3)-space are replaced by auxiliary variables on the (2+3)-space, which together with
the Hamiltonian structure, are then reduced back onto the Minkowski space. Applying the
above procedure with obvious modifications to the present case of field theory we write down
expressions for the Liouville form and the Hamiltonian:

�(t) =
∫

d4x

∫
d4x ′
(x0 − t, x ′0 − t)

×
2∑

a=1

{Ea(x
′, x; [φ])δ̃φa(x) + E∗a(x

′, x; [φ])δ̃φ∗
a (x)}, (4.1)

H(t) =
∫

d4x

∫
d4x ′
(x0 − t, x ′0 − t)

×
2∑

a=1

{Ea(x
′, x; [φ])φ̇a(x) + E∗a(x

′, x; [φ])φ̇∗
a(x)} − L(t); (4.2)

here δ̃φa(x) is the functional exterior differential of the field variables [8], φ̇a(x) =
∂φa(x)/∂x0,
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Ea(x, x ′; [φ]) = δL(x)

δφa(x ′)
, E∗a(x, x ′; [φ]) = δL(x)

δφ∗
a (x

′)
, (4.3)

and

L(t) =
∫

d3x L(x)|x0=t (4.4)

is the Lagrangian of the system.
The Liouville form determines the symplectic form,  = δ̃�, and hence the Poisson

brackets. The Hamiltonian H generates the evolution of the system in terms of the Poisson
brackets. We note that the Hamiltonian (4.2), calculated for the Lagrangian density (2.5),
coincides with the energy E = P 0 given in equation (3.8).

Equations (4.1) and (4.2) have only a formal meaning until we perform the time
integrations explicitly. To do this we need the explicit solution of the partially reduced
field equations (cf below equation (2.3)). Since these equations are rather complicated and
not solvable exactly we shall resort to the approximation scheme described below.

5. Perturbation scheme and the first-order approximation

We shall use a formal series expansion in the coupling constant. Replacing the coupling
constants ga by ga

√
ε in the partially-reduced field equations (i.e., in the equations (2.2)

with rhs expressed by equations (2.4) and (2.1)) we seek a solution in the form φa(x) =∑∞
n=0 εnφ(n)

a (x). Equating the coefficients of the powers of ε to zero we arrive at the infinite
chain of coupled equations:(

� + m2
a

)
φ(n)

a (x) = J (n)
a (x), n = 0, 1, . . . , (5.1)

where J (0)
a (x) = 0 while J (n)

a (n � 1) are functionals of φ(m)
a with m � n − 1. Thus

equations (5.1) form a hierarchy, which can be solved iteratively, from n = 0.
The equation for φ(0)

a is the homogeneous Klein–Gordon equation, the solution of which
is represented by plane waves. All higher-order functions φ(n)

a can be found using the Green
function method:

φ(n)
a (x) =

∫
d4x ′Ga(x, x ′)J (n)

a (x ′), (5.2)

where Ga(x, x ′) = G(x, x ′;ma) is the Green function of the Klein–Gordon equation. It is
convenient to choose this function as follows:

Ga(x, x ′) = D0(x − x ′;ma) + 1
2 sign x ′0D(x − x ′;ma), (5.3)

where D(x − x ′;ma) is the Pauli–Jordan function [18]. Then the solutions φ(n)
a for all n � 1

are tangent to φ(0)
a at x0 = 0:

φ(n)
a (0,x) = 0, φ̇(n)

a (0,x) = 0, n � 1, (5.4)

so that

φa(x) ≡ φa(0,x) = φ(0)
a (0,x), φ̇a(x) ≡ φ̇a(0,x) = φ̇(0)

a (0,x). (5.5)

Using the expansion series for φa(x) on the rhs of (4.1), (4.2) and (3.8) yields series for
the Liouville form �, the Hamiltonian H and the momentum P = (P i, i = 1, 2, 3):

� =
∞∑

n=0

εn�(n), H =
∞∑

n=0

εnH (n), P =
∞∑

n=0

εnP (n). (5.6)
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One can calculate the symplectic form and other conserved quantities similarly. After all the
coefficients of the formal series are calculated (to the desired power), the parameter ε should
be replaced by 1.

Since the quantities in (5.6) are evaluated at the same instant of time, we put t = 0. This
corresponds to the Schrödinger picture at the quantum level.

It is easy to show using (5.5) that in zero-order approximation we have

�(0) ≡ �free[φ] =
2∑

a=1

∫
d3x {φ̇∗

a(x)δ̃φa(x) + φ̇a(x)δ̃φ∗
a (x)}, (5.7)

H(0) ≡ H free[φ] =
2∑

a=1

∫
d3x

∫ {
φ̇∗

a(x)φ̇a(x) + (∇φ∗
a (x)) · (∇φa(x)) + m2

aφ
∗
a (x)φa(x)

}
,

(5.8)

P (0) ≡ P free[φ] = −
2∑

a=1

∫
d3x {φ̇∗

a(x)∇φa(x) + φ̇a(x)∇φ∗
a (x)}, (5.9)

We note that the Liouville form and thus the symplectic form have the standard canonical
expressions in this approximation. Thus the variables (φa(x), φ̇a(x)) and (φ∗

a (x), φ̇∗
a(x))

form canonically conjugate pairs, which parametrize the phase space.
The first-order correction terms can be written as follows:

�(1) ≡ �nc[φ] = 1

2

∫
d4x

∫
d4x ′
(x0, x ′0)ρ(0)(x ′)K(x ′ − x)δ̃ρ(0)(x), (5.10)

H(1) ≡ H nc[φ] + H int[φ] = 1

2

∫
d4x

∫
d4x ′
(x0, x ′0)ρ(0)(x ′)K(x ′ − x)ρ̇(0)(x)

− 1

2

∫
d3x

∫
d4x ′ρ(0)(x ′)K(x ′ − x)ρ(0)(x)|x0=0, (5.11)

P (1) ≡ P nc[φ] = −1

2

∫
d4x

∫
d4x ′
(x0, x ′0)ρ(0)(x ′)K(x ′ − x)∇ρ(0)(x). (5.12)

In this approximation the variables φa, φ̇a, φ
∗
a , φ̇

∗
a are no longer canonical due to the term

�(1) ≡ �nc of the Liouville form (this is indicated by the superscript ‘nc’). The terms H nc

and P nc have a similar nature, as is seen from their analogous structure.
In order to calculate �(1) and H(1) explicitly it is convenient to transform each complex

field into a pair of real fields:

φa = 1√
2
(φa1 + iφa2), φ∗

a = 1√
2
(φa1 − iφa2). (5.13)

In zero-order approximation we obtain

φ(0)
aα (x) = 1

(2π)3/2

∑
A=±

∫
d3k√
ka0

aA
aα(k) eiAka ·x, a = 1, 2, α = 1, 2, (5.14)

where ka0 =
√

m2
a + k2 and ka = (ka0,k).

For brevity we replace the double subscript aα by a single subscript a (a = 1, . . . , 4) in
intermediate calculations. In this notation,

�free =
∑

a

∫
d3x φ̇a(x)δ̃φa(x)

= i

2

∑
a

∑
AB

∫
d3k AaA

a (k)δ̃aB
a (−ABk), (5.15)
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H free = 1

2

∑
a

∫
d3x

{
φ̇2

a(x) + (∇φa(x))2 + m2
aφ

2
a(x)

}

= 1

2

∑
a

∑
A

∫
d3k ka0aA

a (k)a−A
a (k), (5.16)

P free = −
∑

a

∫
d3x φ̇a(x)∇φa(x)

= 1

2

∑
a

∑
A

∫
d3k kaA

a (k)a−A
a (k); (5.17)

hereafter roman capital indices A,B,C, . . . run over +,−. In the new notation the function
ρ(x), equation (2.3), takes on the form

ρ(x) = −1

2

∑
a

gaφ
2
a(x), (5.18)

and equations (5.10)–(5.12) remain valid.
Let us consider the first-order corrections to � and H. In momentum representation they

take the form

�nc = − i

2

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v SABCD

ab (k, q,u,v)
[
δ̃aA

a (k)
]
aB

a (q)aC
b (u)aD

b (v),

(5.19)

H nc = 1

2

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v SABCD

ab (k, q,u,v)Aka0aA
a (k)aB

a (q)aC
b (u)aD

b (v),

(5.20)

H int = 1

2

∑
ab

∑
ABCD

∫
d3k d3q d3u d3v T ABCD

ab (k, q,u,v)aA
a (k)aB

a (q)aC
b (u)aD

b (v). (5.21)

Here

SABCD
ab (k, q,u,v) = gagb

16(2π)3

δ(3)(Ak + Bq + Cu + Dv)√
ka0qa0ub0vb0

×P
K̃(Aka + Bqa) − K̃(Cub + Dvb)

Aka0 + Bqa0 + Cub0 + Dvb0
, (5.22)

T ABCD
ab (k, q,u,v) = − gagb

16(2π)3

δ(3)(Ak + Bq + Cu + Dv)√
ka0qa0ub0vb0

K̃(Aka + Bqa), (5.23)

P stands for principal value, and

K̃(k) =
∫

d4x e−ik·xK(x). (5.24)

The correction P nc to the momentum can be easily obtained by means of the replacement
δ̃aA

a (k) → iAkaA
a (k) in equation (5.19) for �nc.

As pointed out above, the field variables in both the position and momentum
representations are not canonical because of the first-order term of the Liouville form �nc.
Let us perform a transformation of variables a → a such that the new variables a become
canonical with respect to this form, at least to the accuracy required:

�free[a] + ε�nc[a] = �free[a] + O(ε2). (5.25)
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Use of the ansatz

aA
a (k) = aA

a (k) + ε
∑

b

∑
BCD

∫
d3q d3u d3v RABCD

ab (k, q,u,v)aB
a (q)aC

b (u)aD
b (v) + O(ε2).

(5.26)

in (5.25) leads to the equation∑
F

(F − A)RFBCD
ab (−AFk, q,u,v) = SABCD

ab (k, q,u,v) (5.27)

for the adjustable function RFBCD
ab (k, q,u,v), which has the solution

RABCD
ab (k, q,u,v) = A

2
S−ABCD

ab (k, q,u,v). (5.28)

In the new variables, the Hamiltonian simplifies to

H = H free[a] + ε(H nc[a] + H int[a]) = H free[a] + εH int[a]) + O(ε2), (5.29)

and the momentum reduces to free-particle form

P = P free[a] + εP nc[a] = P free[a] + O(ε2). (5.30)

The space-like components of the angular momentum Mij (i, j = 1, 2, 3) also take on free-
particle form, while the time-like components M0j contain interaction terms. Such a structure
of the canonical realization of the Poincaré group is characteristic of the instant form of
relativistic dynamics [19], in which the evolution parameter t coincides with the coordinate
time x0 (as it does in our case).

6. Canonical quantization and two-particle variational states

Returning to the double index aα (instead of the temporarily used single one a; cf below
equation (5.14)) and introducing the new complex fields variables:

ba = a−
a1 + ia−

a2√
2

, b∗
a = a+

a1 − ia+
a2√

2
, da = a−

a1 − ia−
a2√

2
, d∗

a = a+
a1 + ia+

a2√
2

(6.1)

we rewrite the Liouville form, (5.28), omitting some terms which are total differentials and
thus do not contribute to the symplectic form,

� = i
2∑
a

∫
d3k{b∗

a(k)δ̃ba(k) + d∗
a (k)δ̃da(k)}. (6.2)

It follows from (6.2) that (ba(k), b∗
a(k)) and (da(k), d∗

a (k)) are canonically conjugate pairs.
In the quantum description we consider these variables as the annihilation and creation
operators ba(k), b

†
a(k), da(k), d

†
a(k) satisfying the standard commutational relations and the

conventional vacuum state conditions [4, 5].
The quantum operators corresponding to the Hamiltonian (5.29) and the momentum (5.30)

become (with ε = 1):

H = H free + H int, (6.3)

H free =
2∑

a=1

∫
d3k ka0

{
b†

a(k)ba(k) + d†
a(k)da(k)

}
, (6.4)
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H int = −
2∑

a=1

2∑
b=1

gagb

8(2π)3

∫
d3k d3q d3u d3v

δ(3)(k − q + u − v)√
ka0qa0ub0vb0

× :
{
da(k)ba(−q) + b†

a(−k)ba(−q) + da(k)d†
a(q) + b†

a(−k)d†
a(q)

}
× [

K̃
(
u+

b − v−
b

){
db(u)bb(−v) + b

†
b(−u)d

†
b(v)

}
+ K̃

(
u+

b − v+
b

){
b
†
b(−u)bb(−v) + db(u)d

†
b(v)

}]
:, (6.5)

P = P free =
2∑

a=1

∫
d3k k

{
b†

a(k)ba(k) + d†
a(k)da(k)

}
, (6.6)

where : : denotes normal ordering, and u±
a = (±ua0,u), v±

b = (±vb0,v) are 4-momenta on
the upper (+) or lower (–) sheet of the mass shell.

Now we are going to consider the two-body problem. We begin with the ‘particle 1 +
particle 2’ ansatz |1 + 2〉 = ∫

d3s d3t F (s, t)b†
1(s)b

†
2(t)|0〉, where F(s, t) is a channel

wavefunction. The two-particle sector of the Fock space is not invariant under the action
of the Hamiltonian (6.3)–(6.5). Thus the state |1 + 2〉 cannot be an exact eigenstate of H
whatever the function F(s, t). We shall treat this function as an adjustable QFT counterpart
of a variational parameter.

In the rest frame P |1 + 2〉 = 0 and the wavefunction takes on the form F(s, t) =
f (s)δ(3)(s + t), which follows from the free-particle structure of the momentum operator
(6.6). Then using the variational principle δ〈1 + 2|H − E|1 + 2〉 = 0 and following [4] leads
to the following equation for the wavefunction f (s):[

2∑
a=1

pa0 − E

]
f (p) = g1g2

8(2π)3

∫
d3q f (q)√

p10p20q10q20

2∑
a=1

K̃
(
p+

a − q+
a

)
, (6.7)

where K̃ is defined in equation (5.24). This is a relativistic Salpeter-like wave equation for
the stationary states of the two-particle system.

Similarly, using the ansatz |1 + 1〉 = ∫
d3s d3t f (s)δ(3)(s + t)b†(s)d†(t)|0〉 and following

[5] we arrive at the wave equation for a particle–antiparticle system (say, for particle 1 and
antiparticle 1; we omit the subscript a since no quantities corresponding to particle 2 appear),

[2p0 − E]f (p) = g2

8(2π)3

∫
d3q f (q)

p0q0
{2K̃(p+ − q+) + K̃(p+ − p−) + K̃(q+ − q−)}, (6.8)

where p0 = p10 = p20 and p± = p±
1 = p±

2 since m = m1 = m2. Note that the term
2K̃(p+ − q+) corresponds to the exchange of one quantum of the mediating field while
K̃(p+ − p−) and K̃(q+ − q−) correspond to virtual annihilation.

We now consider the nonrelativistic (NR) limit |p| 
 m of equations (6.7) and (6.8).
Taking into account the fact that the symmetric Poincaré-invariant kernel K(x) is a function
of x2, and thus the Fourier transform K̃(p) is a function of p2, we have

K̃(p+ − q+) = K̃(p0 − q0,p − q) −→ K̃(0,p − q), (6.9)

K̃(p+ − p−) = K̃(2p0, 0) −→ K̃(2m, 0). (6.10)

Then equation (6.7) reduces to the form[
p2

2mr

− ε

]
f (p) = g1g2

4(2π)3m1m2

∫
d3q f (q)K̃(0,p − q), (6.11)

where mr = m1m2/(m1 + m2) and ε = E − (m1 + m2).
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The NR limit of the particle–antiparticle equation (6.8) similarly becomes[
p2

m
− ε

]
f (p) = g2

4(2π)3m2

∫
d3q f (q){K̃(0,p − q) + K̃(2m, 0)}. (6.12)

In coordinate representation these equations are the usual Schrödinger ones:

− 1

2mr

�ψ(r) +
g1g2

4m1m2
U(r)ψ(r) = εψ(r) (6.13)

for (6.11), and

− 1

m
�ψ(r) +

g2

4m2
{U(r) − K̃(2m, 0)δ(3)(r)}ψ(r) = εψ(r) (6.14)

for (6.12). The function U(r) can be obtained from either the momentum or coordinate
representations of the kernels:

U(r) = −
∫

d3k

(2π)3
e−ik·xK̃(0,k) = −

∫
dx0K(x). (6.15)

For the Yukawa model the kernel in the momentum representation has the form:

K̃(k) = D̃0(k;µ) =
∫

d4x e−ik·xD0(x;µ) = P
1

µ2 − k2
(6.16)

where D0(x;µ) is the symmetric Green function of the Klein–Gordon equation [18]. Thus,
the function U(r) and the constant K̃(2m, 0) become

UY(r) = − 1

4πr
e−µr , K̃(2m, 0) = 1

µ2 − 4m2
. (6.17)

We note that

(p+ − q+)2

{= 0 if p = q

< 0 otherwise,
(p+ − p−)2 � 4m2. (6.18)

Thus the on-shell value K̃(p+ − q+) of the kernel (6.16) is a non-singular function, and the
principal value sign P for such terms of equations (6.7) and (6.8) can be omitted. The same
applies to the annihilation terms K̃(p+ − p−) and K̃(q+ − q−) unless µ � 2m, in which
case the principal value should be taken to avoid the singularity at |p| =

√
µ2 − 4m2.

Let us consider the case of the tachyonic mediating field which corresponds to the Klein–
Gordon field with imaginary mass µ = i�. The quantized theory of tachyons encounters
difficulties in the description of free quanta [20–22]; however, systems with free quanta are
not considered here. In contrast to the standard Yukawa model, the on-shell tachyonic kernel
K̃(p+ − q+) possesses a singularity and the principal value should be taken on the rhs of
equations (6.7) and (6.8). The annihilation terms of equation (6.8) (containing K̃(p+ − p−)

and K̃(q+ − q−)) are regular everywhere in this case. The tachyonic NR potential is a long-
range one since it differs from the Yukawa one (6.17) by the oscillating numerator cos �r ,
instead of exp(−µr).

In the next section we consider some kernels arising from nonstandard field theories.

7. Kernels arising from nonstandard field theories

Various nonstandard field theories, which may lead to difficulties in quantized form, are
nevertheless used as effective field theories. Examples are field theories with higher derivatives
[22–24] and nonlocal field theories [10–12]. Among the problems are those connected to the
consistent inclusion of free field quanta in the theory. On the other hand, if a nonstandard



8376 A Duviryak and J W Darewych

field is used only as a mediator of the interaction (and free quanta are absent), the theory may
correspond to a system of physical interest. The most radical realization of this idea is the
virton theory [12] where nonlocal field equations possess no solution for free quanta but the
Green function and thus the mediated interaction is not trivial. The quantization of the virton
field is a rather elaborate procedure. In contrast, the present scheme, where mediating fields
are eliminated at the classical level, looks to be the simplest way to extract useful content from
nonstandard field theories. The output of the scheme is the covariant Green function for the
corresponding field equation. We shall consider the general structure and a few examples of
kernels for nonstandard field theories.

7.1. General structure of kernels

Let the Lagrangian density (henceforth ‘Lagrangian’) of the free χ -field be Lχ = 1
2χF(�)χ .

Then the corresponding field equation (instead of (2.3)) reads

F(�)χ = ρ. (7.1)

The ‘elementary solution’ of this equation, i.e., by definition [25], the solution of the equation

F(�)K(x) = δ(4)(x), (7.2)

takes on the formal expression:

K(x) = F−1(�)δ(4)(x) =
∫

d4k

(2π)4
eik·xK̃(k), where K̃(k) = 1/F (−k2). (7.3)

The existence and properties of K(x) depend of the choice of the operator F(�). Note
that in general K(x) is not a Green function in the conventional sense since Cauchy’s problem
is not well posed [10, 20]. For this reason we shall use the term ‘elementary solution’ [25]
rather than ‘Green function’.

Of physical interest are theories where F(z) is the integer function of the complex variables
z, such that [F(z)]∗ = F(z∗) (the latter equality implies that Lχ is real). Then the operator
F(�) can be presented in the form [10]

F(�) = const ef (�)

N∏
n=1

(
� + µ2

n

)
, (7.4)

where f (z) is an integer function (so that ef (z) has no zeros), parameters µ2
n are real or complex

(whereupon there are also factors with [µ2
n]∗ in the product), and N may be infinite.

If the operator F(�) is purely polynomial (i.e., f (�) = 0) the field equation (7.1) is a
higher derivative differential equation. Then, in general, the χ -field can be split effectively
into N Klein–Gordon fields of masses µn which, although they contribute with different signs
into the total energy, cancel mutually field singularities of point-like sources [10]. Of special
interest are degenerate cases which may exhibit fundamentally different features from the
Klein–Gordon case. In the next subsection we will consider the choice F(�) = �2 which
leads to a confining interaction.

If f (�) �= 0 the field equation (7.1) is an integral one. Usually the operator ef (�) is
used in nonlocal field theories [10, 12] and also in related regularization methods [13, 15,
16] in order to suppress ultraviolet divergences. For this purpose the function f (z) which is
increasing as z → +∞ is appropriate. For example, the following choice of nonlocal field
operator is used often in the literature [10, 15, 16]:

F(�) = e(�+µ2)/�2
(� + µ2), (7.5)
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where � is a cut-off parameter. The corresponding symmetrical kernel,

K̃(k) = P
e(k2−µ2)/�2

µ2 − k2
, (7.6)

decreases exponentially as k2 → −∞. This leads to the NR potential,

U(r) = − 1

8πr

∑
±

e±µr [erf(�r/2 ± µ/�) ∓ 1], (7.7)

which coincides with the Yukawa potential (6.17) for r  1/� and is finite at r = 0. The
on-shell value K̃(p+ − q+) of the kernel (7.6) is regular and exponentially decreasing at
(p − q)2 → ∞, so that the two-particle equation (6.7) is solvable.

In contrast to the two-particle (i.e., particle 1 + particle 2) case, the particle–antiparticle
problem is determined by the behaviour of kernel K̃(k) not only in the domain k2 < 0, but
also in k2 > 0. In turn, this depends on the properties of the cut-off function ef (z) at z < 0.
Following [12], the cut-off function must possess a power asymptotics at z → −∞. This is
not the case for the choice (7.5), (7.6) which leads to difficulties in the particle–antiparticle
problem. Indeed, the function K̃(p+ − p−) is exponentially increasing at p2 → ∞ so that
equation (6.8) is inconsistent.

Finally, if the operator (7.4) has no polynomial factor, i.e., F(�) = ef (�), the
homogeneous equation F(�)χ0 = 0 possesses a trivial solution χ0 = 0 only . This case
is typical of virton field theory [12]. The previous remark concerning the choice of cut-off
function is actual in this case also.

7.2. Higher derivative theory for quark binding

Quantum chromodynamics is based on classical Yang–Mills equations, but no solutions of
these equations, exhibiting confinement, have appeared in the literature to date. Moreover,
such classical confining solutions are believed not to exist, since confinement is felt to be a
quantum phenomenon. The quantum (QCD) description of confinement has proved to be very
challenging and has still not been entirely resolved.

On the other hand, a number of comparatively simple theories with higher derivatives
are known, which, despite quantization difficulties, lead to confinement—even at the classical
level [23, 24]. Theories of similar but non-Abelian structure have arisen from QCD as
effective theories of the gluon field in infrared asymptotics [26–28]. Classical Abelian
solutions [29] to effective field equations [27] have been shown to provide confinement in
the relativistic potential model [29, 30]. Here, we combine the simplest such theory [23] with
the generalized Yukawa model.

The free-χ term of the Lagrangian can be written as

Lχ = 1

2�2
(�χ)2 � 1

2�2
(∂µ∂νχ)(∂µ∂νχ), (7.8)

where � is a constant with dimensions of mass, and � denotes equality modulo divergence
terms. The equation for the mediating field is the fourth-order equation,

�2χ = −�2ρ. (7.9)

We need the symmetric elementary solution E(x) of (7.9), which satisfies the equation

�2E(x) = δ(4)(x). (7.10)

It has the form [29]

E0(x) = 1

16π
θ(x2), (7.11)
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where an arbitrary constant C can be added to the rhs. Thence the solution of (7.9),

χ = K ∗ ρ, with the kernel K(x) = −�2E0(x), (7.12)

is used in the original action I = ∫
d4xL(x) for the construction of the reduced theory.

The choice C = −1/(16π) permits us to calculate the NR potential without the need for
regularization which would otherwise be required. Using equation (6.15) we obtain the result

UL(r) = �2r

8π
. (7.13)

The higher-order Lagrangian theory can be reformulated as an equivalent one with a
first-order Lagrangian but depending on two fields [10, 23]. The term (7.8) in the Lagrangian
L = ∑2

a=1 La + Lχ + LY is replaced by

Lφχ = (∂µϕ)(∂µχ) − 1
2�2ϕ2, (7.14)

which leads to the pair of coupled inhomogeneous d’Alembert equations,

�χ = −�2ϕ (7.15)

�ϕ = ρ. (7.16)

Let us construct the time-symmetric solution to these equations. For (7.16) we have

ϕ = D0 ∗ ρ, with the kernel D0(x) = 1
2 {D+(x) + D−(x)}, (7.17)

where

Dη(x) = 1

4π
{1 + η sign x0}δ(x2), η = ±1, 0 (7.18)

are the retarded (if η = +), the advanced (if η = −) and the symmetric (if η = 0) Green
functions of the d’Alembert equation. Once the rhs of equation (7.15) is known, the solution
of this equation may be sought in the same way. However such a solution does not exist. It has
the formal expression χ = −�2D0 ∗ϕ = −�2D0 ∗D0 ∗ρ = − 1

4�2(D+ +D−)∗ (D+ +D−)∗ρ,
which is divergent since D+ ∗ D− is not a well defined distribution [29]. Instead, the function
χ , defined by equations (7.12) and (7.11), together with ϕ, equation (7.17), does satisfy the
set of field equations (7.15) and (7.16). This can be seen from the following representation
[29]:

E0(x) = 1
2 [D+ ∗ D+ + D− ∗ D−](x); (7.19)

then �χ = − 1
2�2�(D+ ∗ D+ + D− ∗ D− − 1/(8π)) ∗ ρ = −�2 1

2 (D+ + D−) ∗ ρ = −�2ϕ.

The elimination of the fields ϕ and χ from the Lagrangian L = ∑2
a=1 La + Lχ + LY,

where Lχ is defined by equation (7.14), yields the reduced Lagrangian.
Let us consider the Salpeter-like equations (6.7) and (6.8) for this case. The construction

of the Fourier transform K̃(k) of the kernel K(x) = −�2E0(x) is a subtle problem. From
naive dimensional arguments we have K̃(k) ∼ −�2/k4, i.e., there is a strong singularity on
the light cone k2 = 0. Thus this kernel should be properly defined.

One can proceed from the analytical continuation method. Following [25] the generalized
functions (k2 ± i0)λ as distributions in 4D k-space and analytical functions of λ have a pole
at λ = −2. Then using the Fourier transformation and the Laurent series expansion one can
present the Fourier transform of E0(x) as follows:

Ẽ0(k) = lim
ε→0

1

2

d

dε
ε[(k2 − i0)−2+ε + (k2 + i0)−2+ε]. (7.20)

A similar method (in combination with the Wick rotation) was used in [31] for calculation of
the nonrelativistic limit of the Bethe–Salpeter equation with confining kernel.
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In our case equations (6.7) and (6.8) include the on-shell value K̃(p+ − q+) of the kernel
which is a function in 3D momentum space (not in 4D, as in the Bethe–Salpeter case). The
confining kernel is highly singular at p = q, as follows from (6.18). The existence of the
on-shell value Ẽ0(p

+ − q+) of the function (7.20) as a distribution in 3D space has not been
studied as yet.

Thus we refer to another method of regularization of confining potentials in the momentum
representation which was elaborated in a number of works [32–34]. The idea of the method
originates from nonrelativistic considerations [33] and is based on the observation that
UL = − 1

2�2 limµ→0 ∂2UY/∂µ2. This relation applied to the Fourier transform of potentials
defines the regularized confining potential in momentum space [33].

It appears that a similar relation exists for corresponding covariant functions,

E0(x) = − 1
2 lim

µ→0
∂2D0(x;µ)/∂µ2, (7.21)

where E0(x) is defined by equation (7.11) and D0(x;µ) is the symmetric Green function of
the Klein–Gordon equation. The same relation in the momentum representation,

Ẽ0(k) = −1

2
lim
µ→0

∂2

∂µ2
D̃0(k;µ) = lim

µ→0

{
1

(µ2 − k2)2
− 4µ2

(µ2 − k2)3

}
, (7.22)

can be considered as the definition of the Fourier transform Ẽ0(k) of the function E0(x).
Moreover, the on-shell value Ẽ0(p

+ − q+) of the function (7.22) is a well-defined distribution
in 3D space. We demonstrate this below, following [34] where relativistic generalizations of
confining potentials in momentum space are analysed.

Decomposing the wavefunction f (p) into partial waves f�(p), where p = |p|,
one can present singular interaction terms of equations (6.7) and (6.8) as limµ→0 Iµ =
limµ→0 (const)A(p) ∂

∂µ
[µ�µ], where �µ = ∫ ∞

0 dq f�(q)B(q)
Q′

�(zµ)

pq , the functions A(p) =
B(p) = (p10p20)

−1/2 are smooth everywhere, zµ = (
pa0qa0 −m2

a + 1
2µ2

)/
pq, and Q�(z) is the

Legengre function of second kind. Hence, as discussed in section 3 and appendix A of [34],
limµ→0 Iµ exists.

The annihilation terms have no singularities (cf (6.18)).

7.3. Accounting for short-range interactions

In order to obtain, in the NR limit, the funnel potential rather than the linear one (7.13) we
modify the previous model, namely the free-χ Lagrangian (7.8), as follows:

Lχ −→ L̄χ = 1

2�2
(�χ − ρ)2. (7.23)

Now the interaction comes not only from the Yukawa term LY but also from L̄χ . The field
equations take on the form(

� + m2
a

)
φa = gaφa

{
1

2�2

(
�χ − 1

2
ρ

)
− χ

}
, (7.24)

�2χ = −
(

�2 − 1

2
�

)
ρ (7.25)

(the equation for φ∗
a is evidently similar to (7.24)). Omitting details, we write down the

symmetric solution of equation (7.25):

χ = −(
�2E0 − 1

2D0
) ∗ ρ. (7.26)

The use of this solution on the rhs of equations (7.24) reduces them to the following:(
� + m2

a

)
φa = gaφa(�

2E0 − D0) ∗ ρ. (7.27)
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One can construct the reduced Lagrangian as discussed earlier. It has the form (2.5), but with
the kernel

K = −�2E0 + D0, (7.28)

which generates the NR funnel potential:

UF(r) = UL(r) + UC(r) = �2r

8π
− 1

4πr
. (7.29)

The reduced Lagrangian obviously reproduces equations (7.27).
Similar to the previous example, we can consider an equivalent formulation of the present

model in terms of the first-order Lagrangian:

L =
2∑

a=1

La + (∂µϕ)(∂µχ) − 1

2
�2ϕ2 + ρ

(
χ +

1

2
ϕ

)
. (7.30)

After the change of variables χ̄ = χ + 1
2ϕ, ϕ̄ = χ − 1

2ϕ, this Lagrangian takes on the more
conventional form

L =
2∑

a=1

La +
1

2
(∂µχ̄)(∂µχ̄) − 1

2
(∂µϕ̄)(∂µϕ̄) − 1

2
�2(χ̄ − ϕ̄)2 + ρχ̄, (7.31)

where the matter fields φa interact only with the mediating field χ̄ via the Yukawa term.
Note that if we put φ̄ = 0 in the Lagrangian (7.31), the model reduces to the conventional
Yukawa model, with a Yukawa potential (6.17) in the NR limit. Otherwise, if χ̄ = 0, the
interaction disappears and φ contributes in the Lagrangian (7.31) as a free tachyonic field.
But neither φ̄ = 0, χ̄ �= 0 nor φ̄ �= 0, χ̄ = 0 are solutions of the variational problem for the
Lagrangian (7.31). It is also evident that the energy of the system of fields described by
the Lagrangian (7.31) is not necessarily positive. This fact is the source of difficulties when
the quantum theory with free mediating fields is constructed [10].

8. Conclusions

Although the partially reduced formulation of QFT was introduced several years ago, it has
been realized recently that this approach is a time nonlocal field theory. The main idea of the
present paper is the treatment of time nonlocality by means of an appropriate Hamiltonian
formalism [8]. The Hamiltonization procedure is dependent in an essential way on the explicit
time evolution of the fields. Since the Yukawa-like systems are not solvable exactly, we are
forced to use an appropriate approximation scheme, such as the coupling constant expansions
of the present paper. It turns out that two-body equations obtained in previous works [4, 5], that
use the reduced formulation of the Yukawa model, correspond to the first-order approximation
in the coupling constant expansion (see section 8).

In order to push the approach to higher-order approximations it is important, above all,
to have a proper procedure of reducing the Liouville form to canonical form rather than
some heuristic prescription. Another possibility is the development of some noncanonical
quantization procedure. Either way, higher-order approximations need to be compared to
conventional perturbative QFT.

Nevertheless, even within the first-order approximation, the partially reduced approach
leads simply to Salpeter-like two-body wave equations, which may describe a wide class
of interactions. The kernels of such equations can be related to standard field theories, or
to various nonstandard classical field theories which describe characteristic features of the
interaction under consideration in an effective way.
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The approach can be applied to systems of fields with nonzero spin, such as fermionic
matter fields and vector or tensor mediating fields.
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